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In the physiological state a multitude of gut hormones are released into the circulation at the same time depending on the quality
and quantity of the diet. These hormones interact with receptors at various points in the “gut-brain axis” to affect short-term
and intermediate-term feelings of hunger and satiety. The combined effects of macronutrients on the predominant gut hormone
secretion are still poorly understood. Besides, adipokines form an important part of an “adipoinsular axis” dysregulation which
may contribute to 𝛽-cell failure and hence to type 2 diabetes mellitus (T2DM). Even more, gestational diabetes mellitus (GDM)
and T2DM seem to share a genetic basis. In susceptible individuals, chronic exaggerated stimulation of the proximal gut with
fat and carbohydrates may induce overproduction of an unknown factor that causes impairment of incretin production and/or
action, leading to insufficient or untimely production of insulin, so that glucose intolerance develops.The bypass of the duodenum
and jejunum might avoid a putative hormone overproduction in the proximal foregut in diabetic patients that might counteract
the action of insulin, while the early presentation of undigested or incompletely digested food to the ileum may anticipate the
production of hormones such as GLP1, further improving insulin action.

1. Introduction

Under steady-state conditions, all ingested fuels (energy
intake) are normallymetabolized tomaintain basicmetabolic
rate, thermogenesis, andmuscle action (energy expenditure).
Food intake and energy expenditure can be influenced by
environment and lifestyle. This knowledge highlights the
importance of understanding the physiological and molecu-
lar mechanisms responsible for the final predominated signal
of appetite control [1].

All of the peripheral and central processes that make
up this highly complex system are subject to individual
predisposition through genes. Key peripheral components
are the gustatory system, the gastrointestinal tract, pancreas,
liver, muscle, and adipose tissue (Figure 1). The aim of this
review is to give an insight into the major peripheral signals
in the food intake control, viewed in a dynamic context taking

into account the major food related signals and to discern
possible explanations of the diabetogenic state recovery after
weight lose [2].

2. Intestinal Signals

Over 30 different regulatory peptide hormones are secreted
in the gut, the largest endocrine organ in the body. Gut
nutrient content stimulates several of these hormones which
interact with receptors at various points in the “gut-brain
axis” to affect short-term and intermediate-term feelings of
hunger and satiety [3]. The major gut hormones implicated
in appetite control (Table 1) are age, sex, and bodymass index
(BMI) dependent (Table 2).

By chemo/mechanosensory mechanisms, the gastroin-
testinal tract sends information to the brain regarding
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Table 1: Major peripheral signals involved in food intake regulation.

Hormone Site of secretion Major receptors Major actions

Intestinal

Amylin Pancreatic 𝛽 cells AMY
1–3

Inhibits gastric secretion
Delays gastric emptying
Decreases blood glucose

Cholecystokinin
Intestinal Icells CCK2

Gall bladder contraction
Delays gastric emptying

Pancreatic enzyme contraction

Endocannabinoid system
Postsynaptic cell CB1, CB2 Modulates appetite besides a variety of

physiological processes

Ghrelin Gastric fundal A cells GHS–R Increases gastric motility
Growth of hormone release

Glucagon Pancreatic 𝛼 cells Glucagon Gluconeogenesis
Glycogenolysis

Glucagon-like peptide-1
(GLP-1) Gastrointestinal L cells GLP–1

Glucose-dependent insulin release
Delays gastric emptying
Vagal and CNS effects

Glucose-dependent
insulinotropic polypeptide

(GIP)

K cells in duodenum and
jejunum GIP–R Stimulates insulin synthesis and secretion

Oxyntomodulin Gastrointestinal L cells GLP–1
Glucose-dependent insulin release

Delays gastric emptying
Vagal and CNS effects

Pancreatic polypeptide Pancreatic PP cells Y
4

Delays gastric emptying

Peptide YY (PYY) Gastrointestinal L cells Y
2

Delays gastric emptying
Vagal and CNS effects

Adipose

Adiponectin

Adipocyte,
skeletal muscle,

endothelial cells, and
cardiomyocytes

AdipoR1
AdipoR2
T-cadherin

Adiponectin, via AMPK
phosphorylation, increases insulin
sensitivity, fatty acid oxidation and

reduces the synthesis of glucose in the
liver and other tissues

Leptin Adipocyte LEPR Increases POMC anorexigenic signals
Inhibits NPY, stimulating appetite

Plasminogen activator
inhibitor-1 (PAI-1) Endothelium, adipocyte Binds to (tPA) Inhibitor of fibrinolysis

Tumour necrosis factor
alpha (TNF-𝛼) Adipocyte Tumor necrosis factor

receptor (TNFR) Insulin resistance

AMPK: AMP-activated protein kinase, CNS: central nervous system, NPY: neuropeptide Y, POMC: proopiomelanocortin, and tPA: tissue plasminogen
activator.

available energy for metabolism. Postprandially, activation
of gut mechanoreceptors, changes in circulating nutrient
concentration, and release of anorectic gut hormones all lead
to a reduction in subsequent feeding [4]. However, apart
from traditional homeostatic feedback regulation of energy
balance, food appearance, flavor, and availability in addition
to social, cultural, and economic influences determine food
intake. Importantly, there is also modulation of food intake
by hedonic andmnemonic neuronal circuits [5].Themodern
consensus is, therefore, that there is interaction between
homeostatic and nonhomeostatic inputs, which together lead
to coordination in terms of inducing either an orexigenic or
anorectic response.

2.1. Amylin. Amylin or islet amyloid polypeptide (IAPP) is
a 37-amino acid pancreatic peptide that is cosecreted with
insulin. This hormone is a member of the calcitonin family

of peptides and is involved in meal satiety signaling [6–8].
As such, amylin and related compounds also inhibit gastric
emptying and reduce meal size [9, 10].

Synthetic or naturally occurring amylin agonists have
been shown to be more potent and have a longer duration
of feeding suppression than amylin itself [11]; one such
potent anorectic analog in humans, primates, and rodents
is calcitonin of salmon origin (sCT) [12]. This compound
irreversibly binds to amylin receptors to produce sustained
anorectic responses [13]. Additionally, the anorectic potency
of amylin agonists is not dependent on intact vagal afferent
signaling [14].

2.2. Cholecystokinin. Cholecystokinin (CCK) is considered
a highly selective satiation signal acting over two recep-
tors, the CCK-B, predominantly found in the brain, where
the unsulfated tetrapetide CCK-4 is active and the A-type
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Figure 1: Interacting hormones involved in food-intake control.
GIP: glucose-dependent insulinotropic polypeptide; PYY: peptide
YY.

receptor of the gastrointestinal tract, where the sulfated
CCK-forms (CCK-8-S, CCK-33-S, CCK-39-S, and CCK-58-
S) bind. Satiety and meal size limitation are mediated mainly
by the CCK-A-receptor [27].

Luminal fat and protein are strong releasers of CCK from
enteroendocrine cells. The food intake suppressive effect
results from CCK acting in a paracrine fashion on CCK-
A receptors located on vagal sensory nerve terminals in the
mucosal lamina propia [28–30]. Intact vagal afferent neurons
are required for the satiety effects of CCK.

2.3. Endocannabinoid System. There are reports suggesting
that the peripheral endocannabinoid system is implicated in
the regulation of energy balance. For instance, during periods
of fasting, levels of the endocannabinoid and anandamide
are elevated in the rat duodenum [31]. Furthermore, in obese
rodents, an increase in mRNA for CB1 receptors is observed
in the stomach [32] and in the nodose ganglia [33], and
endocannabinoid levels in the duodenum, pancreas, and
liver are similarly elevated in this animal model [34]. On
the contrary, cannabinoid CB1 receptor antagonists reduce
food intake and body weight, but clinical use in humans has
been limited by effects on the central nervous system (CNS),
although there are new options with limited CNS penetration
[35].

2.4. Ghrelin. Ghrelin is an orexigenic hormone [36], secreted
in the oxyntic gland cells in the mucosa of the stomach,
originally isolated from the rat stomach as an endogenous
ligand of the growth hormone secretagogue receptor (GHS-
R), and has been shown to have a GH-releasing effect [37].
Yet, the ghrelin receptor is expressed by a subset of stomach
innervating vagal afferent neurons in the nodose ganglia [38].

Plasma ghrelin concentrations are elevated during a fast.
Moreover, plasma ghrelin concentrations display a circadian
rhythm: a rise before each meal and a rapid fall after eating.

Fasting morning ghrelin concentrations have a negative
correlation with fat mass index [39]. On the other hand, diet-
induced weight loss in obese individuals increased plasma
ghrelin levels [40].These findings suggest that plasma ghrelin
levels may represent a compensatory response to altered
energy metabolism. Of note, central and peripheral admin-
istration of ghrelin stimulates food intake and body weight
gain [37].

2.5. Glucose-Dependent Insulinotropic Polypeptide (GIP).
Glucose-dependent insulinotropic polypeptide (GIP) isman-
ufactured and released in the duodenum and proximal
jejunum by the K cells. Its plasma concentration increases
quickly following food ingestion, stimulating an increase
in insulin synthesis and secretion [41]. Carbohydrate, fat,
and protein have all been shown to stimulate GIP secretion
[42]. Pancreatic and duodenal homeobox-1 (Pdx-1) binds to
GIP promoter. This, together with the fact of a remarkable
reduction in the number of GIP-expressing cells in Pdx−/−
mice [43], suggests that this incretin may play a role in 𝛽-cell
differentiation.

2.6. Glucagon-Like Peptide-1 (GLP-1). Proglucagon is a 160-
amino acid prohormone that is produced in the 𝛼 cells
of the pancreatic islets, the L cells of the distal gut, and
within the CNS. Selective posttranslational proteolysis of
proglucagon by prohormone convertases 1 and 2 results in the
tissue-specific production of a number of biologically active
fragments.

GLP-1 is a potent insulin secretagogue that is secreted, in
response to ingested nutrients. GLP-1 and related agonists,
such as exendin-4, have been demonstrated to reduce food
intake by slowing gastric emptying, reducing meal size, and
promoting feelings of satiety [44, 45]. The reductions in food
intake by these compounds appear to be peripherally medi-
ated, as they are dependent on intact vagal afferent signaling
[46]. The importance of the vagus nerve in mediating the
proximal-distal loop was elucidated from the evidence that
GLP-1 secretion is enhanced when the fat is administered
into the duodenum or when the GLP-1 secretion, in response
to the infusion of physiological concentration of GIP, was
completely abrogated by vagotomy [47].

2.7. Oxyntomodulin. Another product of the tissue-specific
differential cleavage of proglucagon is oxyntomodulin
(OXM), a hormone cosecreted with GLP-1 and PYY

3-36 into
the circulation by intestinal L-cells after nutrient ingestion
[48]. OXM is a satiety signal through GLP-1R [36, 49] and
administration reduces energy intake in both rodents and
humans [50, 51]. OXM levels are increased after gastric
bypass surgery.

2.8. PYY. PYY is a 36-amino acid peptide, which belongs to
the pancreatic polypeptide (PP) family, which also includes
NPY.All these bind toG-protein coupled receptors Y

1
, Y
2
, Y
4
,

Y
5
, and Y

6
, displaying promiscuity in their interactions with

these receptors by virtue of their shared hair-pin-fold motif
structure [3].
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PYY is produced by the L cells of the gut, with highest
concentrations found in the large bowel and the rectum [52].
Two endogenous forms, PYY

1-36 and PYY
3-36, are released

postprandially into the circulation. PYY
3-36, which acts

mainly via the Y
2
receptor, is further produced by cleavage

of the Tyr-Pro amino terminal residues of PYY
1-36 by the

enzyme dipeptidyl peptidase IV (DPP-IV). PYY
1-36 predom-

inates in the circulation in the fasted state, whereas PYY
3-36

is the major circulating form postprandially. Following a
meal, circulating levels of PYY

3-36 rise within 15min, peak at
approximately 90min and remain elevated for up to 6 hours
[53]. The magnitude of the rise in PYY

3-36 is in proportion to
the calories ingested [54]. When exogenously administered
intravenously, its circulating half-life is approximately 8min
[43].

Initial postprandial release of PYY
3-36 is likely to be under

neural control, and further release of PYY
3-36 is observed

when the nutrients arrive in the distal gut, particularly
stimulated by a high fat diet [55]. The protein content of the
diet is thought to be influential for delayed PYY

3-36 release
approximately 2 hours postprandially [56]. Besides a direct
central action, PYY

3-36 is likely to affect appetite via its effects
on gut motility, leading to a sensation of fullness and satiety
[57].

3. Adipose Signals

Adipokines form an important part of an “adipoinsular
axis,” dysregulation of which may contribute to 𝛽-cell failure
and hence to T2DM. While some adipokines have bene-
ficial effects, others have detrimental properties depending
on the predominant intracellular signalling pathways [58].
The major cause of T2DM could be a human metabolic
zwitterion-like molecule, with positive or negative effects
over the beta cell depending on its state of activation.

3.1. Adiponectin. Unlike many other adipokines, adiponectin
has beneficial effects improving insulin sensitivity and vascu-
lar function, thus being both antidiabetic [59] and antiathero-
genic [60]. Opposite to other adipokines the circulating levels
are decreased when the BMI is higher. The loss in body
weight by adiponectin is mainly due to stimulation of energy
expenditure [61].

Two adiponectin receptors AdipoR1 and AdipoR2 that
exhibit 67% homology have been cloned. Many of the effects
of the adiponectin-AdipoR interaction have been suggested
to be mediated by 5󸀠 AMP-activated protein kinase (AMPK),
peroxisome proliferator-activated receptor a (PPARa), and
p38 mitogen-activated protein kinases (MAPK) [62].

3.2. Leptin. Leptin is thought to signal longer-term energy
status. This hormone engages a number of intracellular
pathways, including those associated with cyclic adenosine
monophosphate (cAMP), MAPK, phosphatidylinositol 3󸀠-
kinase (PI3 K), and signal transducer and activator of tran-
scription 3 (STAT3) [63, 64].

In contrast to adiponectin, serum concentration of circu-
lating leptin is elevated in obesity. Thus, probably there is a

decrease in response to leptin [61]. Although leptin showed
a great potential in preclinical studies, it was usefulness in
clinical trials [65]. In eating disorders the results are contro-
versial [66].

In the hypothalamic arcuate nucleus there are two types
of neuronal populations with high levels of expression of
the leptin receptor (LEPR), proopiomelanocortin (POMC),
and cocaine- and amphetamine-regulated transcript (CART)
neurons, which activate anorexigenic pathways [67, 68] and
agouti-related peptide (AGRP) and neuropeptide Y (NPY)
neurons that transfer appetite stimulating signals. A decrease
in leptin is correlated with an increased food intake [67].

By binding to LEPR in the hypothalamus, leptin causes
Janus kinase 2 (JAK2) activation and LEPR tyrosine residues
phosphorylation, allowing STAT3 to be dimerized and
translocated to the nucleus, leading to anorectic peptide
synthesis [67, 68]. Also, it has been shown that leptin’s
effects on food intake and body weight require inhibition
of hypothalamic AMPK. Thus, hypothalamic AMPK plays a
critical role in hormonal and nutrient-derived anorexigenic
and orexigenic signals and in energy balance [69, 70].

3.3. Plasminogen Activator Inhibitor-1 (PAI-1). Plasminogen
activator inhibitor-1 (PAI-1) is the most important endoge-
nous inhibitor of fibrinolysis and increased levels are asso-
ciated with insulin resistance, body weight control, and
thrombosis. In humans, visceral adipose mass has been
shown to be a primary determinant of PAI-1 levels. In T2DM,
not only increased adipose tissue mass but other metabolic
disturbances, including hyperinsulinemia, hyperglycemia,
and dyslipidemia, alter adipose tissue function and lead to
increased production and circulating levels of PAI-1 [25].
Consumption of fructose at 25% of energy requirements for
10 weeks leads to increases of fasting as well as postprandial
PAI-1, suggesting the possibility that prolonged consumption
of fructose may contribute to the development of metabolic
syndrome via induction of prothrombotic (PAI-1) mediators
besides proinflammatory cytokines [71].

4. Combined Signals

In the fed physiological state a multitude of gut hormones
are released into the circulation at the same time depending
on the quality and quantity of the diet with recommended
proportions of the macronutrients as follows: carbohydrates
60%, proteins: 20%, and lipids: 20% (Figure 2). How the
satiety factors act in concert to regulate appetite is still
misunderstood.

Following the above-mentioned idea, after a high-protein
meal, ghrelin declines gradually in both normal weight and
obese children without subsequent increase, whereas ghrelin
is suppressed more rapidly to a nadir at 60min after a high-
carbohydrate meal in both groups of children, followed by
rebound in ghrelin levels. Similarly, after the high-protein
meal, PYY concentrations increase steadily over the course
of the morning in both groups without decline, whereas
PYY levels peaked 30min after the high-carbohydrate meal
in both normal weight and obese subjects with significant
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decline thereafter. Ghrelin and PYY responses to the high-fat
meal are somewhat intermediate between that observed with
high carbohydrate and high protein [15].

Amylin, especially when combined with other anorectic
hormones, has beneficial long-term effects on body weight.
For example, amylin and GLP-1 mediate the feedback control
of eating by seemingly separate but overlapping mechanisms.
Another case is CCK, a synergic effect has been observed
when applied simultaneously with amylin, estradiol, insulin,
and leptin [72].

The combination of PYY
3-36 and GLP-17-36 amide pro-

duces a reduction in ad libitum energy intake in healthy,
lean human subjects [73]. Recent work in investigating the
utility of combinational therapies for the treatment of obesity
has focused on the coadministration of amylin with leptin
[74]. Moreover, combinational therapy of exendine-4 + sCT
produced sustained daily food reductions without tolerance,
nausea, malaise, or rebound feeding. These findings further
support the view that engaging multiple feeding inhibitory
pathways to reduce food intake could be a potential strategy
for the treatment of obesity.

5. Peripheral Signals Modulated by Food

One strategy for the prevention of overweight and obesity
related diseases is the use of agents that interfere with the
hydrolysis and absorption of dietary carbohydrates and lipids.
Themost important dietary carbohydrates are starch, sucrose,
and lactose.They are digested by disaccharidases in the upper
gastrointestinal tract and broken down into monosaccha-
rides. Subsequently they are absorbed to the circulation. The
elevated glucose concentration in blood promotes insulin
secretion from the 𝛽 cells of the islets of Langerhans in
the pancreas, and insulin mediates the uptake of glucose
in peripheral tissues including muscle, adipose tissue, and
kidney. Taking into account the importance of carbohydrate
metabolism, the gastrointestinal enzymes can be therapeutic
targets for limiting absorption of monosaccharides [75].

In addition, the most important dietary lipids are triglyc-
erides and cholesterol esters. They are digested by pancreatic
lipase and pancreatic phospholipase A2 to glycerol, fatty
acids, and free cholesterol. Finally, they are absorbed to the
circulation and may be used or stored in adipose tissue [76].

In the literature it can be found several reviews that
describe active substances in plants that inhibit pancreatic
enzymes. It has been recorded that more than 1200 plant
species could have a hypoglycemic activity [77]. For exam-
ple, Hanhineva et al. revised the inhibitory properties of
polyphenols (i.e. flavonoids, phenolic acids, proanthocyani-
dins, and resveratrol). They reported that these polyphenols
may influence carbohydratemetabolism atmany levels. More
interesting is that these compounds are contained in plant-
based foods, such as tea, coffee, wine, cocoa, cereal grains, soy,
fruits, and berries [78, 79].

Besides the food in their natural form, the heat processing
of food (i.e., boiling) can produce derivate compounds that
show digestive enzymes inhibitory properties. For example,
it has been shown that after heat treating of raw ginseng,
amino acid derivatives such as arginyl-fructose and arginyl-
fructosyl-glucose are formed at high levels; these products
inhibited postprandial hyperglycemia through the inhibition
of 𝛼-amylase and 𝛼-glucosidase [80]. Other compounds such
as flavonoids from grape seed Cat’s whiskers and Sweetleaf
extract obtained by heat processing also inhibited 𝛼-amylase
[81].

It is worth mentioning that some plants do not show
a significant effect in the inhibition of 𝛼-amylase; however,
in combination with acarbose, an antidiabetic drug with
𝛼-glucosidase inhibitory properties has a synergistic effect
due to low doses of acarbose that are necessary for the
postprandial glycemic control. For example, the polyphenol
extracts from a range of berries, especially raspberry and
rowanberry, showed an effect only in combination with
acarbose [82]. Other examples of this synergistic action are
the inhibition by cyanidin-3-rutinoside [83] and some species
of cinnamon [84].
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The brush border enzymes are inhibited by molecules
extracted from plants. For example, the D-fagomine from
seeds of buckwheat inhibits sucrase [85], diacylated antho-
cyanin from purple sweet potatoes has been shown to inhibit
maltase [86], cyanidin-3-galactoside inhibits sucrase and
maltase [87], and 𝛼-glucosidase is inhibited by the hydro-
methanolic seed extract of Holarrhena antidysenterica [88],
by ethanol extract of the fruit case of Garcinia mangostan
[89], and by Corni fructus [90]. Flavonoids from grape seed
Cat’s whiskers and Sweetleaf extract inhibit intestinal sucrase
and maltase [81] (which is also inhibited by some species of
cinnamon) [84].

Enzymes from themetabolism of lipids can be also inhib-
ited by compounds of the plants; for example, oligomeric
procyanidins in the apple polyphenol extract inhibit pancre-
atic lipase [91], and arginyl-fructose and arginyl-fructosyl-
glucose inhibit lipase [80]. Cocoa procyanidins inhibit pan-
creatic lipase, also pancreatic 𝛼-amylase, and phospholipase
A2, and this inhibition produces a decrement in plasma
triglyceride and glucose concentrations in mice as well as
humans [92].

More studies are needed about the inhibitory activity of
substances from natural origins (i.e., plants) on intestinal
enzymes. Diabetic patients would beneficiate if they include
these plants in their diet instead of active purified com-
pounds. However, the concentrations in food of the active
complexes could be not enough, then it is essential to get them
in a purify form. For this reason, studies are needed in this
area.

6. Evidence for the Existence of
an Intestinal Missing Link

6.1. Gestational Diabetes Mellitus. Obesity increases the risks
of gestational diabetes mellitus (GDM) [93, 94]. Even more,
there seems to be a shared genetic basis between GDM and
T2DM [95]. In fact, the diagnosis of GDM identifies patients
with a pancreatic 𝛽-cell defect. In some patients, the defect
is transient or stable, but in most it is progressive, imparting
a high risk of diabetes for at least a decade after the index
pregnancy.

The majority of women with GDM have clinical char-
acteristics indicating a risk for T2DM. Available evidence
indicates that T2DMcan be prevented or delayed by intensive
lifestyle modification and by medications, particularly those
that ameliorate insulin resistance. All patients should be
monitored for rising glycemia indicative of progressive 𝛽-
cell deterioration. Monitoring should be initiated at least
annually and should be intensified if glycemia is rising and/or
impaired.

Like monitoring, lifestyle modification for obese and
overweight women during pregnancy should be intensified
for rising glycemia and/or development of impaired glucose
levels. These measures restrict gestational weight gain and
reduce the prevalence of gestational diabetes [96].

6.2. Obesity and Diabetes. Obesity, a BMI greater than
30 kg/m2, is strongly and causally linked to T2DM. Recent

data suggest that the prevention of diabetes is feasible if
weight management is addressed. Modest weight loss of 5–
10% body weight is known to improve diabetes by reducing
insulin resistance in obese individuals [97]. Regarding this
strategy, in clinical trials, caloric restriction, exercise, and
weight loss have been shown to prevent and reduce dia-
betes in obese individuals [97, 98] in part by attenuating
insulin resistance and subsequent hyperinsulinemia, thereby
preserving 𝛽-cell function [99, 100].

While the goal of a cure for T2DM remains some way
off, bariatric surgery has long been proven to be effective
in weight reduction in the morbidly obese, as well as in
maintaining long-term weight reduction. With this weight
reduction, obesity-related comorbidities, including T2DM,
tend to improve or resolve completely.

6.3. Bariatric Surgery. Bariatric surgery promotes effective
and sustained weight loss in morbidly obese subjects [101].
Since 1991, several medical societies have established the
criteria for bariatric surgery in cases with BMI > 40 or BMI
> 35 with serious comorbidities [102].

Depending on the type of bariatric procedure, up to
80% resolution of T2DM has been reported, being more
effective that those techniques that bypass the foregut like
the Roux en-Y gastric bypass (RYGBP) [103–106]. Being
more specific, Sugerman et al. found that a young age was
a positive predictor for T2DM resolution [107] as well as
early surgery that preempts irreversible pancreatic 𝛽-cell
deterioration [108].

There are two different theories proposed to explain the
laboratorial benefits after bariatric surgery. The hindgut the-
ory by Cummings et al. [109] proposes that the rapid transit
of nutrients to the hindgut improves glucose metabolism,
probably through GLP-1. The second hypothesis, the foregut
theory by Rubino [110], says that the exclusion of the foregut
from the food stream causes a decrease in insulin resistance
through the secretin pathway. The two theories are not
mutually exclusive.

RYGBP causes an improvement in a diabetic patient’s
status through a variety of mechanisms. More interestingly,
improvement often occurs very soon after the bypass, even
before significant weight loss has occurred [111, 112]. First and
foremost, RYGBP enforces severe calorie restriction through
both mechanical restriction and the upregulation of satiety
signals such as anorexigen PYY [113]. The decrease in caloric
intake is by itself able to result in the improvement of T2DM
[114].

One possible explanation for the metabolic improvement
after RYGBP hypothesis is that bariatric surgeries with gastric
bypass exclude the site responsible for the production of
the hormone causing T2DM [115]. Other explanations are
possible. For example, a hormone overproduced in the
proximal foregut in diabetic patients might counteract the
action of insulin, thus inducing insulin resistance and only
secondarily hyperinsulinemia.

Collectively, evidence supports the concept that the effect
of bariatric surgery on diabetes is mediated by a change in
the pattern of secretion of gastrointestinal hormones [116],
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supporting the use of them as therapeutic targets [117–119].
As a first instance, there is a greater insulin sensitivity due
to a better 𝛽-cell function including the first phase of insulin
secretion [120]. Also, there is restoration of a near-normal,
postprandial insulin response soon after RYGBP [121], which
is associated with a rise in GLP-1 levels [122]. Even more,
ghrelin levels fall after RYGBP [109], resulting in appetite
reduction.

It has been proposed that the bypass of the foregut in
RYGBP restores normal GIP sensitivity and normalises the
GIP levels [111], breaking the “GIP-resistant state,” present in
T2DM [123].

With the strong evidence published worldwide, surgery
has been proven to be superior to medical treatment in terms
of maintaining weight loss and altering the natural course of
T2DM, which has been considered medically incurable [108,
124]. Despite the obvious risks of surgery [125], the risks of
morbid obesity aswell as all its associated comorbiditiesmake
surgery a viable option in those who are eligible.

7. The Adipose-Intestinal Missing Link

In susceptible individuals, chronic exaggerated stimulation of
the proximal gut with fat and carbohydratesmay induce over-
production of an unknown factor that causes impairment of
incretin production and/or action, leading to insufficient or
untimely production of insulin, so that glucose intolerance
develops.

The bypass of the duodenum and jejunum might avoid a
putative hormone overproduction in the proximal foregut in
diabetic patients that might counteract the action of insulin,
while the early presentation of undigested or incompletely
digested food to the ileum may anticipate the production of
hormones such as GLP1, further improving insulin action
[126]. Moreover, GLP-1 has been implicated in the differenti-
ation of pancreatic exocrine cells toward 𝛽 cells by the Pdx-1
gene transcription stimulation. Indeed, GLP-1 increases the
expression of 𝛽-cell-specific genes such as insulin, glucose
transporter 2 (GLUT2), and glucokinase in human and rat
pancreatic ductal cells transfected with Pdx-1 compared with
those transfected with null vector [127].

Carbohydrates are mostly digested to glucose, fructose,
and galactose before absorption by the small intestine.
Absorption across the brush border and basolateral mem-
branes of enterocytes is mediated by Na+-dependent and
-independent membrane proteins. Glucose and galactose
transport across the brush border occur by a Na+/glucose
(galactose) cotransporter (SGLT1), whereas passive fructose
transport is mediated by a uniporter (GLUT5). The passive
exit of all three sugars out of the cell across the basolateral
membrane occurs through two uniporters (GLUT2 and
GLUT5). Mutations in SGLT1 cause a major defect in glucose
and galactose absorption (glucose-galactose malabsorption),
butmutations inGLUT2 do not appear to disrupt glucose and
galactose absorption [128].

Because bariatric surgerywith bypass obviates a great area
of disaccharidases action, it is expected a reduction in glu-
cose absorption which consequently leads to hyperglycemia

improvement. Notwithstanding, a metabolic control would
not be registered if there was not a 𝛽-cell recovery.

The common variable in the pathogenesis of GDM and
T2DM is the weight gain surpassing recommended BMI.
Furthermore, keeping a normal weight is fundamental in
the prevention of these pathologies that are cured after a
great weight loss coming in the puerperium or with bariatric
surgery, respectively. This implies the role of circulating
adipose signal acting on the proximal intestine that might
inactivate a critical factor for the metabolic homeostasis
(mainly insulin effect). SGLT1 or disaccharidases might be
two target candidates to be affected by this adipose tissue
derived factor.

Tumour necrosis factor 𝛼 (TNF-𝛼) expressed in high
circulating levels in obesity is a proinflammatory cytokine
implicated in the induction of insulin resistance [129]. There
is also evidence of TNF-𝛼 effects on the 𝛽 cell, which may
further contribute to T2DM, although, as this cytokine is
expressed in many other diseases without causing T2DM is
low the probability to be by itself the adipose-intestinal link
of T2DM.

8. Conclusions

The combined effects of macronutrients on the predominant
gut hormone secretion are still poorly understood. Thus,
from a therapeutic perspective, targeting the interaction of
appetite signals in the gut offers the potential advantage of
being able to manipulate appetite at a site distant from the
CNS through endocrine and vagal nerve mechanisms [130].

Finally, future studies will target the identification of a
proximal intestinal metabolic molecule, implicated as the
cause or cure of T2DM whether activated or not.
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[75] V. Bermúdez, F. Bermúdez, and N. Arraiz, “Biologı́a molecular
de los transportadores de glucosa: clasificación, estructura y dis-
tribución,”Archivos Venezolanos de Farmacologı́a y Terapéutica,
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